Telegram Group & Telegram Channel
Российская языковая модель A-Vibe от Авито возглавила рейтинг легких ИИ-решений (до 10 млрд параметров) в независимом бенчмарке MERA.

Разработка команды классифайда обошла признанных зарубежных конкурентов — GPT-4o mini от OpenAI, Gemma 3 27B от Google, Claude 3.5 Haiku от Anthropic и Mistral Large.

Модель демонстрирует впечатляющие результаты работы с русским языком. В тестах генерации кода A-Vibe показала результат на 25% лучше, чем Gemini 1.5. При ведении диалогов она оказалась на 32% точнее Llama 3.1. А в анализе смысла текста превзошла Claude 3.5 Haiku на 23%.

Технические возможности A-Vibe позволяют ей одновременно обрабатывать до 32 тысяч токенов контекста. Это дает модели серьезное преимущество при работе с объемными документами и поддержании длительных осмысленных диалогов. Уже сегодня технология активно используется в сервисах Авито, помогая продавцам создавать качественные описания товаров и ускоряя коммуникацию в мессенджере платформы.

«Первое место доказывает, что оптимизированная архитектура и качественные данные могут обеспечить отличные результаты даже при небольшом размере модели. A-Vibe создавалось оптимальной по соотношению между качеством, скоростью работы и затратой ресурсов. Такой баланс позволяет обеспечивать быструю обработку запросов даже в периоды пиковой нагрузки и масштабировать технологию на всю аудиторию платформы», — отметил Андрей Рыбинцев, старший директор по данным и аналитике Авито.

До конца года Авито внедрит в свою нейросеть еще 20 сценариев, а в будущем может сделать ее общедоступной.

Познакомиться с рейтингом можно на сайте MERA. В фильтре «Размер модели» выберите «≥5B — 10B», чтобы получить рейтинг среди небольших моделей. Цифры Human Benchmark — это результат тестирования реальных людей.



tg-me.com/machinelearning_interview/1703
Create:
Last Update:

Российская языковая модель A-Vibe от Авито возглавила рейтинг легких ИИ-решений (до 10 млрд параметров) в независимом бенчмарке MERA.

Разработка команды классифайда обошла признанных зарубежных конкурентов — GPT-4o mini от OpenAI, Gemma 3 27B от Google, Claude 3.5 Haiku от Anthropic и Mistral Large.

Модель демонстрирует впечатляющие результаты работы с русским языком. В тестах генерации кода A-Vibe показала результат на 25% лучше, чем Gemini 1.5. При ведении диалогов она оказалась на 32% точнее Llama 3.1. А в анализе смысла текста превзошла Claude 3.5 Haiku на 23%.

Технические возможности A-Vibe позволяют ей одновременно обрабатывать до 32 тысяч токенов контекста. Это дает модели серьезное преимущество при работе с объемными документами и поддержании длительных осмысленных диалогов. Уже сегодня технология активно используется в сервисах Авито, помогая продавцам создавать качественные описания товаров и ускоряя коммуникацию в мессенджере платформы.

«Первое место доказывает, что оптимизированная архитектура и качественные данные могут обеспечить отличные результаты даже при небольшом размере модели. A-Vibe создавалось оптимальной по соотношению между качеством, скоростью работы и затратой ресурсов. Такой баланс позволяет обеспечивать быструю обработку запросов даже в периоды пиковой нагрузки и масштабировать технологию на всю аудиторию платформы», — отметил Андрей Рыбинцев, старший директор по данным и аналитике Авито.

До конца года Авито внедрит в свою нейросеть еще 20 сценариев, а в будущем может сделать ее общедоступной.

Познакомиться с рейтингом можно на сайте MERA. В фильтре «Размер модели» выберите «≥5B — 10B», чтобы получить рейтинг среди небольших моделей. Цифры Human Benchmark — это результат тестирования реальных людей.

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1703

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Machine learning Interview from vn


Telegram Machine learning Interview
FROM USA